
101 學年度四技二專統一入學測驗 數學(C) 試題

1.	下列何者為不等式	$3x^2 - 3x \le 6$ 之解?			
	$(A)x \leq -2 $ $\overrightarrow{x} $ $x \geq 1$	$(B)-2 \leq x \leq 1$	$(C)-1 \leq x \leq 2$	$(D)x \le -1$ 或 $x \ge 2$ 。	
2.	在 $x \ge 0$, $y \ge 1$, $x = 1$	+y≤2的條件下,2	x-y的最大值為何'	?	
	(A)-2	(B)-1	(C)1	(D)2 °	
3.	設拋物線 x^2-2x-	4y+1=0 之頂點為	V 且與直線 L:y=1	l 相交於 A、B 二點,	
	則ΔABV 之面積為	何?			
	(A)1		(C)4		
4.	若函數 f(x)的導函	數為 $f'(x)=x^2-6x$,	則 $\lim_{x\to 6} \frac{f(x)-f(6)}{x-6}$ 之	值為何?	
	(A)0	(B)1	(C)6	(D)不存在。	
5.	下列何者與 log 1+	$-\log 2 + \log 3 + \log 4$	+log 5-log 6 的值量	是為接近?(已知 log 2	
	的值約為 0.301,而 log 3 的值約為 0.4771)				
	(A)0.1	(B)1.5	(C)5.3	(D)6.2 °	
6.	設直線 L:kx+3y-	+10=0 與圓 C: x²-	$+y^2=4$ 沒有交點,具	川常數 k 的範圍為何?	
	(A)-4 < k < 4		(B)-2 < k < 2		
	$(C) - \sqrt{2} < k < \sqrt{2}$		$(D)k < -\sqrt{2} $	$>\sqrt{2}$ °	
7.	設拋物線 $y=ax^2+$			x-1),則 3a-2b 之值	
	為何?				
	(A)5	(B)6	(C)7	(D)8 °	
8.	在xy平面上,P和	$\mathbb{I}Q$ 為拋物線 $y=x^2$	上的兩點,若P和Q	的 x 坐標分別是-1	
	和2,則P和Q的			_	
	(A)1	(B)2	(C)4	(D)3 $\sqrt{2}$ °	
9.	設向量 $\bar{\mathbf{u}} = (\mathbf{a}, 2)$,	$\vec{\mathbf{v}} = (3, 2\mathbf{a}) \cdot \vec{\mathbf{w}} = (-1)^{-1}$	-1,2),則下列敘述	过何者正確?	
		平行,則 a=-3	(B) 若 $(2\vec{\mathrm{u}}+\vec{\mathrm{v}})\cdot\vec{\mathrm{v}}$	$\hat{\mathbf{v}} = 0$, $\mathbf{y} = -\frac{5}{2}$	
	(C) 若 $ 2\bar{u}+\bar{v} =5$,	則 $a=-\frac{1}{2}$	(D)若 $ 2\vec{u} + \vec{v} = \vec{v} $	ŷ ,則a=0。	
10.	已知 a 和 c 為實數,若複數 a+2i 為一元二次方程式 $x^2+2x+c=0$ 的一根,則 c				
	之值為何?				
	(A)-4	(B)-2	(C)3	(D)5 °	
11.		B 及 a+4,2,a+7 都		列何者正確?	
	(A)-6 < a < -4	(B) $-4 < a < -2$	(C)2 < a < 4	(D) $4 < a < 6$ °	

24. 設兩直線 $L_1: 3x+y-4=0$ 與 $L_2: x+3y-4=0$,則 L_1 與 L_2 交角為銳角的角平 分線方程式為何?

(A)x+y-2=0 (B)x-y=0 (C)2x+y-3=0 (D)2x-y=0

25. 將 0、0、2、2、9、9、9、9 八個數字全取,排成一列,可得幾個不同的八位數?

(A)155

(B)210

(C)315

(D)420 °

【解答】

1.(C) 2.(C) 3.(B) 4.(A) 5.(B) 6.(A) 7.(B) 8.(D) 9.(B) 10.(D)

11.(B) 12.(D) 13.(A) 14.(D) 15.(B) 16.(D) 17.(C) 18.(C) 19.(A) 20.(B)

21.(D) 22.(C) 23.(C) 24.(A) 25.(C)

101 學年度四技二專統一入學測驗 數學(C) 試題詳解

$$1.(C)$$
 $2.(C)$ $3.(B)$ $4.(A)$ $5.(B)$ $6.(A)$ $7.(B)$ $8.(D)$ $9.(B)$ $10.(D)$

21.(D) 22.(C) 23.(C) 24.(A) 25.(C)

1. 原式即
$$3x^2 - 3x - 6 \le 0 \iff x^2 - x - 2 \le 0 \iff (x - 2)(x + 1) \le 0$$
,知 $-1 \le x \le 2$

	A	В	C
(x, y)	(0, 1)	(1,1)	(0, 2)
2x-y	-1	1	-2
			(x,y) $(0,1)$ $(1,1)$

y=1 x=0 x + y = 2 x = 0

max

3.
$$x^2-2x-4y+1=0 \Leftrightarrow (x-1)^2=4y$$
 之頂點 $V(1,0)$
$$\begin{cases} (x-1)^2=4y \\ y=1 \end{cases}$$
 可解得交點 $A \cdot B \Rightarrow (3,1)(-1,1)$

$$\triangle ABV$$
 之面積為 $\frac{1}{2}$ (4)(1)=2

4.
$$\text{Fix} \lim_{x \to 6} \frac{f(x) - f(6)}{x - 6} = f'(0) = x^2 - 6x|_{x = 6} = (6)^2 - 6(6) = 0$$

5.
$$\log 1 + \log 2 + \log 3 + \log 4 + \log 5 - \log 6$$

= $\log \frac{5!}{6} = \log_{10} 20 = 1 + \log 2 = 1 + 0.301 = 1.301$

最接近之選項為(B)

6.
$$C: x^2+y^2=2^2$$
,圓心 $O(0,0)$,半徑 $r=2$
L 與 C 無交點 \Leftrightarrow $d(O,L)>r $\Leftrightarrow \frac{|k(0)+3(0)+10|}{\sqrt{k^2+3^2}}>2$

$$\Leftrightarrow 5>\sqrt{k^2+9} \Leftrightarrow k^2+9<25\Leftrightarrow (k+4)(k-4)<0\Leftrightarrow -4< k<4$$$

7. 切點(1,f(1))在切線上

$$f(1)-2=4(1-1)$$
 ⇒ $f(1)=a+b=2$ ······(1) $m = f'(1)=2a+b=4$ ······(2) $+ i\pi : y-2=4(x-1)$ 所求 $3a-2b=6$

8.
$$\overline{PQ} = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$

$$Q(2,4)$$
 $Q(2,4)$
 $y=x^{2}$

9.
$$\vec{\mathbf{u}} = (\mathbf{a}, 2)$$
, $\vec{\mathbf{v}} = (3, 2\mathbf{a})$, $\vec{\mathbf{w}} = (-1, 2)$

$$2\vec{u} + \vec{v} = (2a, 4) + (3, 2a) = (2a + 3, 2a + 4)$$

若今 $2a+3=b(方便計算)可得 <math>2\bar{u}+\bar{v}=(b,b+1)$

$$(A)2\vec{u} + \vec{v} // \vec{w} \Leftrightarrow \frac{b}{-1} = \frac{b+1}{2} \not\equiv b = \frac{-1}{3} = 2a+3 \Rightarrow a = \frac{-5}{3}$$

(B)
$$(2\bar{u} + \bar{v}) \cdot \bar{w} = 0 \Leftrightarrow (b, b+1) \cdot (-1, 2) = -b + 2b + 2 = 0$$

知 b=−2=2a+3
$$\Rightarrow$$
a= $\frac{-5}{2}$

(C)|2
$$\vec{u} + \vec{v}$$
|=|(b, b+1)|= $\sqrt{b^2+(b+1)^2}$ =5 \Leftrightarrow b²+b²+2b+1=25

若 b=3=2a+3
$$\Rightarrow$$
a=0

(D)|2
$$\vec{u} + \vec{v}$$
|=|(b, b+1)|= $\sqrt{b^2+(b+1)^2}$ =| \vec{w} | \Leftrightarrow $b^2+b^2+2b+1=5$

$$\Leftrightarrow (b+2)(b-1)=0 \; ; \; \not\exists b=-2=2a+3 \quad \Rightarrow a=\frac{-5}{2}$$

10. $a \cdot c \in \mathbb{R}$, $x^2 + 2x + c = 0$ 由實係數方程式虛根成對定理知

$$\int$$
二根和 $a+2i+a-2i=-2$ 知 $a=-1$
二根積 $(-1+2i)(-1-2i)=c$ 知 $c=5$

11. 2, 2a, 18 成等比 $(2a)^2 = 2 \times 18$,知 $a = \pm 3$(1)

$$a+4$$
, 2, $a+7$ 成等比 $(2)^2=(a+4)(a+7)$,即 $a^2+11a+24=0$

即
$$(a+3)(a+8)=0$$
 知 $a=-3$ or -8 ···········(2)

由
$$(1)(2)$$
可知 $a = -3$ 滿足 $-4 < a < -2$

12. x^2+x+1 為 x^3+ax^2+bx+2 之因式,必 $\begin{cases} b-a=0\\ 3-a=0 \end{cases}$,即 b=3

$$\begin{array}{c|cccc}
 1 + a + b + 2 & -1 \\
 -1 + (1 - a) & -1
 \end{array}$$

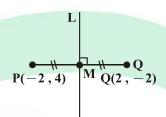
$$\frac{-1+(1-a)}{(a-1)+(b-a)+(3-a)}$$

13.
$$\Leftrightarrow f(x) = x^5 + ax^4 + bx^3 + 5x^2 + 2x - 5$$

 $x - 1|f(x) \Leftrightarrow f(1) = 1 + a + b + 5 + 2 - 5 = 0 \Leftrightarrow a + b = -3 \cdots (1)$
 $x + 1|f(x) \Leftrightarrow f(-1) = -1 + a - b + 5 - 2 - 5 = 0 \Leftrightarrow a - b = 3 \cdots (2)$
 $\pm (1)(2) \Leftrightarrow a = 0, b = -3, 3a + b = -3$

14.
$$\sec 250^{\circ} = \sec (180^{\circ} + 70^{\circ}) = -\sec 70^{\circ}$$

$$(A) - \csc 70^{\circ}$$
; $(B) - \sec 110^{\circ} = -\sec (180^{\circ} - 70^{\circ}) = \sec 70^{\circ}$;


$$(C) - \sec 340^{\circ} = -\sec (360^{\circ} - 20^{\circ}) = -\sec 20^{\circ}$$
;

(D)
$$-\csc 160^{\circ} = -\csc (90^{\circ} + 70^{\circ}) = -\sec 70^{\circ}$$

15.
$$\overline{PQ}$$
 之中點 $M(\frac{-2+2}{2}, \frac{4-2}{2}) = (0, 1)$

$$m_{\overline{PQ}} = \frac{6}{-4} = \frac{-3}{2}$$
知 $L = \frac{2}{3}$

$$L: y-1 = \frac{2}{3} (x-0)$$
即 $-2x+3y-3=0$

$$a+b=(-2)+(-3)=-5$$

16.
$$A(1, 1)$$
, $B(a, 2)$, $C(b, -1)$, $D(0, -2)$

$$\vec{AB} = (a-1, 1) \cdot \vec{CD} = (-b, -1)$$

由
$$\vec{AB}$$
 // \vec{CD} 知 $\frac{a-1}{-b} = \frac{1}{-1}$ 即 $a-1=b$ ·······(1)

$$\vec{BD} = (-a, -4), \vec{AC} = (b-1, -2)$$

$$(1)$$
中 $a=b+1$ 代入 (2) 可得 $(b+1)(b-1)-8=0$

即
$$b=3 \text{ or } -3(不合 b>0)$$

代(1)知
$$a=4$$
,所求 $a+2b=4+2(3)=10$

17.

A 區 2 人 , B 區 3 人
$$\rightarrow$$
 C $_{2}^{4} \times$ C $_{3}^{4} = 6 \times 4 = 24$

A 區 3 人,B 區 2 人
$$\rightarrow$$
C $_3^4 \times C_2^4 = 4 \times 6 = 24$

A 區 4 人,B 區 1 人
$$\rightarrow$$
C₄ \times C₁ = 4=4, 計 52

《另解》8 人任取 5 人,扣除甲乙丙丁中只取 1 人即可
$$=C_5^8-C_1^4\times C_4^4=56-4=52$$

18.
$$(1,1,3) \rightarrow \frac{3!}{2!} = 3 \cdot (1,2,2) \rightarrow \frac{3!}{2!} = 3 \cdot \text{fix} \frac{3+3}{6^3} = \frac{6}{216} = \frac{1}{36}$$

《另解》
$$x+y+z=5$$
 求非負整數解
即 $H_{5-3}^3 = H_2^3 = C_2^{3+2-1} = C_2^4 = 6$

所求
$$\frac{6}{6^3} = \frac{1}{36}$$

19.
$$f'(x) = 3x^2 + 6x \rightarrow f(x) = \int f'(x) dx = \int (3x^2 + 6x) dx = x^3 + 3x^2 + c$$

但
$$f(1)=1+3+c=3$$
 即 $c=-1$ 知 $f(x)=x^3+3x^2-1$

所求
$$\int_0^2 f(x) dx = \int_0^2 (x^3 + 3x^2 - 1) dx = (\frac{1}{4}x^4 + x^3 - x)\Big|_0^2 = \frac{1}{4}(16) + 8 - 2 = 10$$

20.
$$C: x^2+(y-a)^2=a^2$$
, 圓心 $O(0,a)$ 在 $y=2^x$ 上

知
$$a=2^0=1=$$
半徑 r , $L:3x-4y+k=0$

相切⇔
$$d(0, L) = r \Leftrightarrow \frac{|3(0)-4(1)+k|}{5} = 1 \Leftrightarrow |k-4| = 5$$

所求
$$\log_2 a + \log_5 (k-4)^2 = \log_2 1 + \log_5 5^2 = 0 + 2 = 2$$

21.
$$\sin^2 210^\circ + \cos^2 570^\circ + \sec^2 930^\circ - \tan^2 1290^\circ + \csc^2 1650^\circ - \cot^2 2010^\circ$$

$$570^{\circ} = 360^{\circ} + 210^{\circ}$$
, $930^{\circ} = 720^{\circ} + 210^{\circ}$

$$1290^{\circ} = 1080^{\circ} + 210^{\circ}$$
, $1650^{\circ} = 1440^{\circ} + 210^{\circ}$, $2010^{\circ} = 1800^{\circ} + 210^{\circ}$

若令
$$210^\circ = \theta$$
,原式即 $(\sin^2\theta + \cos^2\theta) + (\sec^2\theta - \tan^2\theta) + (\csc^2\theta - \cot^2\theta)$

$$=(1)+(1)+(1)=3$$

22. 由餘弦定理知(
$$令 \overline{AB} = x$$
)

$$\sqrt{13}^2 = x^2 + 3^2 - 2 \cdot x \cdot 3 \cdot \cos 60^\circ$$

即
$$x^2-3x-4=0$$
 知 $\overline{AB}=x=4$

$$\begin{array}{c|c}
A \\
\hline
 & 3 \\
\hline
 & \sqrt{13}
\end{array}$$

23.
$$\theta \in \Pi$$

$$\cos\theta = \frac{-3}{5} = \frac{-15}{25}$$

$$\sin\theta = \frac{4}{5} = \frac{20}{25}$$

$$\cos \theta = \frac{-3}{5} = \frac{-15}{25}$$

$$\sin \theta = \frac{4}{5} = \frac{20}{25}$$

$$\sin 2\theta = 2\sin \theta \cdot \cos \theta = 2(\frac{4}{5})(\frac{-3}{5}) = \frac{-24}{25}$$

$$\cos 2\theta = 2\cos^2 \theta - 1 = 2(\frac{-3}{5})^2 - 1 = \frac{-7}{25}$$

$$\because \frac{-24}{25} < \frac{-15}{25} < \frac{-7}{25} < \frac{20}{25}$$

知
$$\sin 2\theta < \cos \theta < \cos 2\theta < \sin \theta$$

育達系列 7 創新研發

24.
$$L_1: 3x+y-4=0$$
, $L_2=x+3y-4=0$

$$L_1 \, \text{與} \, L_2 \, \text{之角平分線}: \, \frac{|3x+y-4|}{\sqrt{10}} = \frac{|x+3y-4|}{\sqrt{10}}$$

則
$$3x+y-4=\pm(x+3y-4)$$

即
$$x+y-2=0$$
 與 $x-y=0$

所求為 L₃(斜率為負)

$$L_3$$
 為 $x+y-2=0$

$$2 排首 \frac{7!}{2!4!} = 105$$

9 排首
$$\frac{7!}{2!2!3!}$$
=210,計 315

$$\frac{\$}{2!4!} - \frac{7!}{2!4!} = \frac{8! - 2!7!}{2!2!4!} = \frac{(8-2)7!}{2!2!4!} = \frac{6 \times 7 \times 6 \times 5}{4}$$

$$=9\times7\times5=315$$

