107 學年度四技二專統一入學測驗 電機與電子群專業(一) 試題

第一部份:電子學(第1至25題,每題2分,共50分)

1. 某矽製二極體之 PN 接面於 5℃時,其逆向飽和電流為 6nA,當此 PN 接面溫度 上升至 35℃時,則其逆向飽和電流為何?

(A)60nA

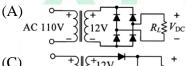
(B)48nA

(C)40nA

 $(D)32nA_{\circ}$


2. 如圖(-)所示之理想稽納(Zener)二極體電路,若 $V_S = 18V$,則該電路之稽納二極體功率規格至少應為何?

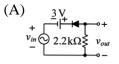
(A)225mW


(B)180mW

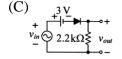
(C)168mW

(D)132mW_o

- 3. 有關輸入、輸出電壓與容量規格皆相同之理想二極體全波整流電路的比較,下列 敘述何者正確?
 - (A)橋式整流電路之二極體逆向耐壓需求為中間抽頭式整流電路之 1/2
 - (B)中間抽頭式整流電路之變壓器線圈僅半波動作,故變壓器容量可縮小約 1/2
 - (C)橋式整流電路之輸出電壓漣波值較中間抽頭式整流電路高
 - (D)中間抽頭式整流電路之二極體電流規格可較橋式整流電路為小。
- 4. 下列全波整流電路之接線,何者正確?



(B) AC 110V $R_L \leq V_{DC}$


 $(C) \xrightarrow{AC \ 110V} \begin{cases} \begin{array}{c} +12V \\ +12V \end{array} & R_L \end{cases} V_{DC}$

(D) AC 110V + 12V $R_L V_{DC}$

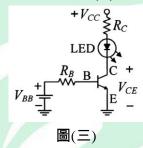
5. 某二極體電路實驗之示波器量測波形如圖(二)所示,已知此實驗電路的輸入信號 $v_{in} = 10 \sin(\omega t)V$,且二極體視為理想,則此實驗電路可能為下列何者?

(B) $v_{in} \odot 2.2 \text{k}\Omega \lessapprox v_{out}$

(D) $v_{in} \odot 2.2k\Omega \nearrow v_{ou}$

育達系列 1 創新研發

\電子機專一.doc(07)

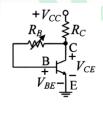

- 6. 下列有關雙極性接面電晶體(BJT)操作於順向主動(active)區之條件描述,何者正 確?
 - (A)NPN 電晶體操作條件為 B-E接面順偏, B-C接面逆偏
 - (B)NPN 電晶體操作條件為 B-E 接面順偏, B-C 接面順偏
 - (C)PNP 電晶體操作條件為 B E 接面逆偏, B C 接面順偏
 - (D)PNP 電晶體操作條件為 B-E接面逆偏, B-C接面逆偏。
- 7. 如圖 (Ξ) 所示之 LED 驅動電路,若 $V_{BB} = 5V$, $V_{CC} = 5V$,電晶體之 $\beta = 50$,LED 二極體流過之電流為 10mA 且順向電壓為 2V,電晶體工作於飽和區且 V_{CE} 之飽和電壓視為零,則下列何者正確?

$$(A)R_B = 30k\Omega$$
, $R_C = 300\Omega$

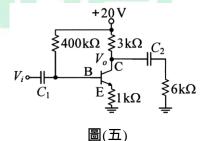
$$(B)R_B = 20k\Omega$$
 , $R_C = 300\Omega$

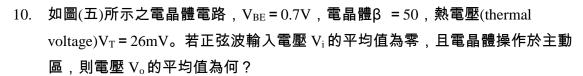
$$(C)R_B = 30k\Omega$$
, $R_C = 200\Omega$

$$(D)R_B = 20k\Omega$$
 , $R_C = 200\Omega$ o


- 8. 下列有關 BJT 電晶體偏壓電路之敘述,何者正確?
 - (A)當電晶體未飽和時, β 值會隨工作溫度上升而變小
 - (B)具射極電阻之分壓式偏壓電路,工作點 I_C 易隨 β 變動
 - (C)集極回授式偏壓電路之基極電阻具正回授特性
 - (D)射極回授式偏壓電路之射極電阻具負回授特性。
- 9. 如圖(四)所示之集極回授偏壓電路, V_{CC} = 12V, V_{BE} = 0.7V,電晶體 β = 150, R_C = 1 $k\Omega$,若 V_{CE} = 6V ,則 R_B 約為何?

 $(A)45.5k\Omega$

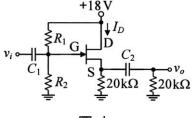

 $(B)78.5k\Omega$


 $(C)133.4k\Omega$

 $(D)160.4k\Omega$ \circ

圖(四)

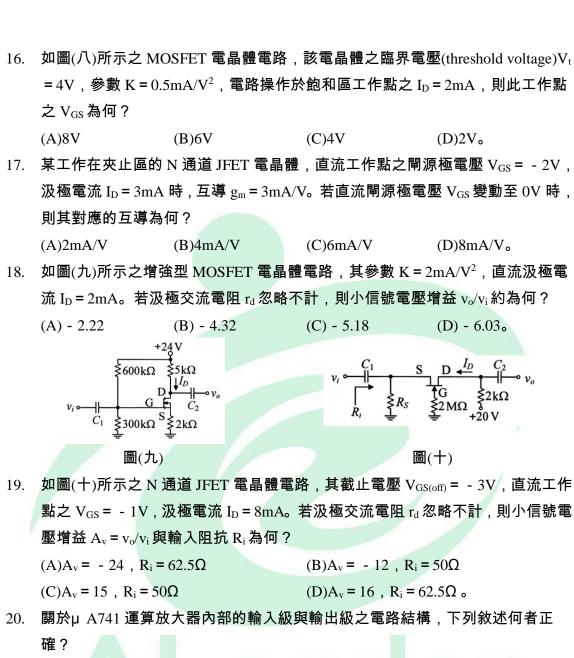
- (A)13.58V
- (B)12.43V
- (C)10.58V
- (D)8.75V_o


 $(D)100_{\circ}$

- 11. 如圖(六)所示之電晶體電路, V_{BE} = 0.7V , V_{T} = 26mV ,則此電路小信號電壓增益 v_{o}/v_{i} 約為何?
 - (A) 100

圖(六)

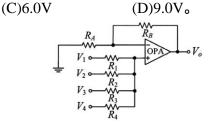
- 12. 如圖(六)所示之電路, V_{BE} = 0.7V , V_{T} = 26 mV , 則此電路小信號電流增益 $|i_{o}/i_{i}|$ 約為何?
 - (A)1.2
- (B)0.49
- (C)0.31
- $(D)0.25_{\circ}$
- 13. 某一串級放大電路之各級電壓增益值分別為 100、10 及 1 倍,若不考慮各級負載效應,則其總電壓增益分貝(dB)值為何?
 - (A)20dB
- (B)60dB
- (C)100dB
- (D)111dB_o
- 14. 有一個單級放大器,其低頻截止頻率為 f_L = 1kHz,高頻截止頻率為 f_H = 200kHz,若將兩相同之此種放大器串接成兩級放大器,則此串接放大器的頻帶寬度約為何?(提示: $\sqrt{0.414} = 0.64$)
 - (A)199kHz
- (B)156.25kHz
- (C)126.44kHz
- (D)105.62kHz_o
- 15. 如圖(七)所示之 JFET 電晶體電路,已知該電晶體截止電壓 $V_{GS(off)}$ = -5V,直流 閘源極電壓 V_{GS} = -4V 時, I_D = 0.5mA,則 R_1/R_2 值為何?
 - (A)0.5
- (B)


- (C)2
- (D)4_o

圖(七)

圖(八)

- (A)輸入級為共集極放大器
- (B)輸入級為二極體整流電路


(C)輸出級為射極隨耦器

(A)1.5V

- (D)輸出級為開集極輸出電路。
- 21. 如圖(十一)所示之理想運算放大器電路,其輸出電壓 V。為何?
- 21. 如则(\mathbf{I})///小人在芯层异从八品电时,共制山电型 \mathbf{V}_0 何问

(B)2.5V

 $\begin{array}{c|c}
2k\Omega & 4k\Omega \\
\hline
+3V & OPA \\
\hline
5k\Omega & 1k\Omega
\end{array}$

圖(十一)

圖(十二)

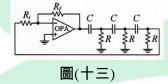
22. 如圖(十二)所示之理想運算放大器電路,若電阻 R_1 = R_2 = R_3 = R_4 = 100kΩ , R_A = 10kΩ ,若欲設計輸出電壓 V_o = V_1 + V_2 + V_3 + V_4 ,則 R_B 為何?

 $(A)5k\Omega$

 $(B)10k\Omega$

 $(C)20k\Omega$

 $(D)30k\Omega$ o

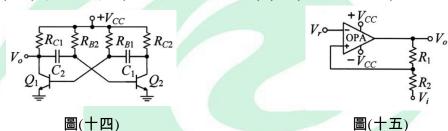

23. 如圖(十三)所示之理想運算放大器 RC 相移振盪器,若此電路已工作於振盪頻率 $1300 \text{Hz} \ \text{L} \ \text{R}_i \gg \text{R}$,則下列何者正確?(提示: $\sqrt{6} = 2.45$)

 $(A)R = 500\Omega$, $C = 0.01\mu$ F

 $(B)R = 1k\Omega$, $C = 0.05\mu$ F

 $(C)R = 2k\Omega$, $C = 0.01\mu$ F

 $(D)R = 2k\Omega$, $C = 0.05\mu$ F_o


24. 如圖(十四)所示之電路,在正常振盪情況下,V₀之週期約為何?(提示:ln2≒ 0.7)

 $(A)0.7R_{B1}C_{1}$

 $(B)0.7R_{C1}C_2$

 $(C)0.7(R_{C1}C_1 + R_{C2}C_2)$

 $(D)0.7(R_{B1}C_1 + R_{B2}C_2)_{\circ}$

25. 如圖(十五)所示之施密特(Schmitt)觸發電路, V_{CC} 為電源電壓,OPA 輸出飽和電壓大小為 V_{sat} , V_r 為參考電壓, V_i 為輸入電壓,則其遲滯(hysteresis)電壓 V_b 為何?

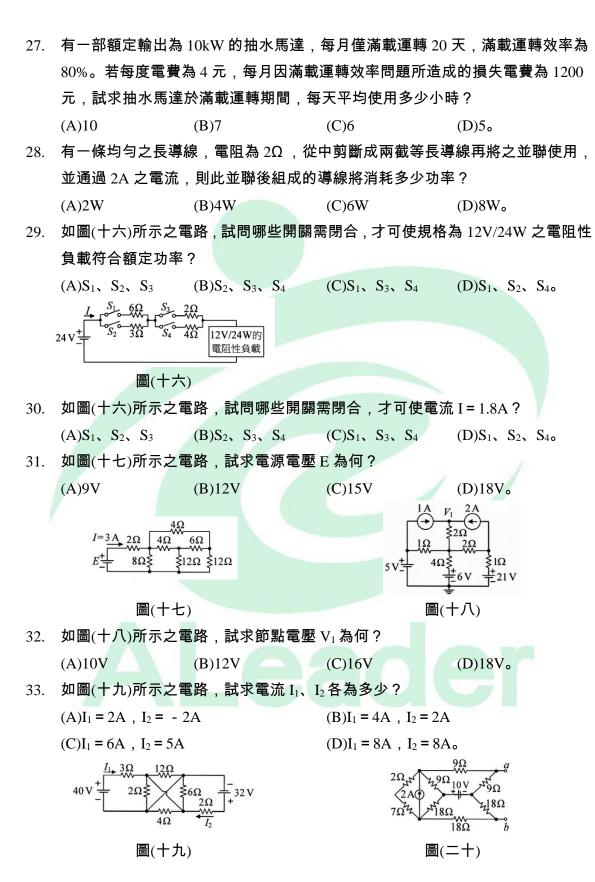
 $(A)2V_{sat}(R_2/R_1)$

 $(B)2V_{sat}(R_1/R_2)$

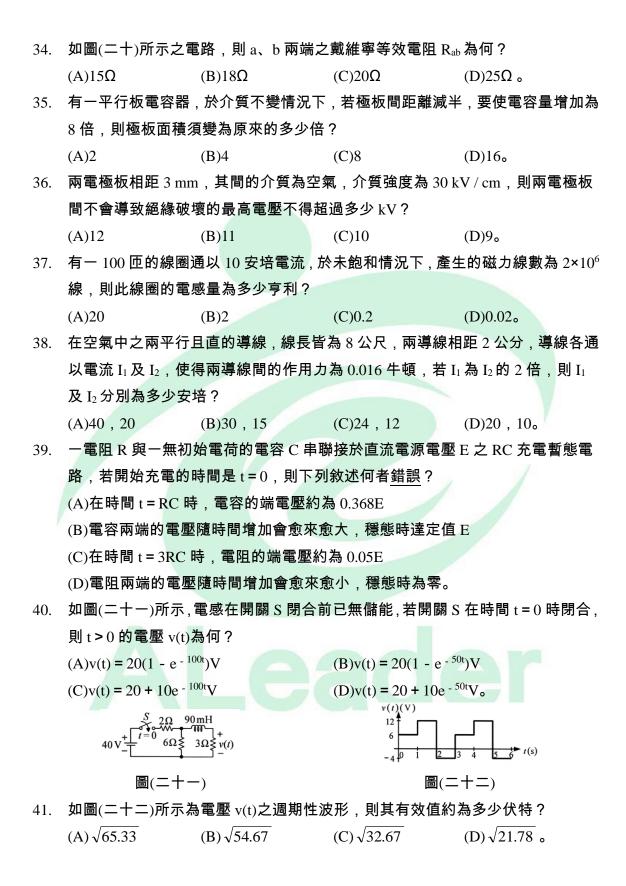
 $(C)(2V_{sat}R_2)/(R_1 + R_2)$

 $(D)(2V_{sat}R_1)/(R_1 + R_2)_{\circ}$

第二部份:基本電學(第 26 至 50 題,每題 2 分,共 50 分)

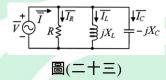

26. 某手機的電池容量為 3200mAh, 只考慮手機使用在待機及通話情況下, 待機時消耗電力的電流為 10mA, 通話時消耗電力的電流為 200mA。若電池充飽後至電力消耗完畢期間, 手機的總通話時間為 10 小時, 則理想上總待機時間應為多少小時?

(A)96

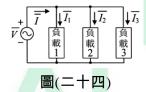

(B)120

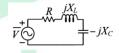
(C)144

 $(D)168_{\circ}$



育達系列 6 創新研發



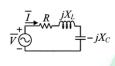

- 42. 若 $\overline{A} = 64 \angle 180^{\circ}$. $\overline{B} = \sqrt{2} \angle 45^{\circ}$. 則 $\sqrt[4]{\overline{A}} + (\overline{B})^3 = ?$ $(A)4\sqrt{2} \angle 45^{\circ}$ $(B)4\sqrt{2} \angle 135^{\circ}$ $(C)4\angle 90^{\circ}$ $(D)4\angle -90^{\circ}$
- 43. 有一個電壓源 $v_s(t) = 100\sqrt{2} \cos(2500t 30^\circ)V$ 接 R = 40Ω , C = 10μ F 之 RC 串聯 交流電路,則下列敘述何者正確?
 - (A)電路總阻抗 $\overline{z} = 40 + i40\Omega$
 - (B)電路總阻抗大小 Z = 80Ω
 - (C)電阻 R 兩端電壓 $v_R(t) = 100\cos(2500t 30^\circ)V$
 - (D)電容 C 兩端電壓 $v_c(t) = 100\cos(2500t 75^\circ)V_o$
- 44. 如圖(二十三)所示 RLC 並聯交流電路,已知 \overline{V} = 100∠ 30 $^{\circ}V$, R = 20 Ω 、 X_L = 10
 - (A) $\overline{I_R}$ 相角超前 $\overline{I_L}$ 相角 30°
- (B) I_C 相角超前 I_L 相角 90°
- (C)I = $5\sqrt{2} \angle 15^{\circ}A$

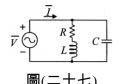
(D) $I_R = 5 \angle 0^{\circ} A_{\circ}$

- 45. 如圖(二十四)所示之交流弦波電路,負載1、負載2及負載3皆為RLC組合之被 動電路,若 \overline{V} = $100\sqrt{2}$ \angle 45°V、 \overline{I} = $200\sqrt{2}$ \angle 45°A、 \overline{I}_1 = 100A、 \overline{I}_2 = 100 \angle 90° A. 則下列敘述何者正確?
 - (A)負載1為純電感性負載
- (B)負載2為純電容性負載
- (C)負載3為純電阻性負載
- (D)負載1為純電阻性負載。

- 46. 一個交流電壓源 $v(t) = 110\sqrt{2} \cos(120\pi t + 30^{\circ})V$,提供電流
 - i(t) = 10cos(120π t 30°)A, 則下列敘述何者正確?

 - (A)瞬間功率的最大值 P_{max} = 825W (B)瞬間功率的最大值 P_{max} = $1100\sqrt{2}~W$


 - (C)瞬間功率的頻率 $f_p = 60$ Hz (D)瞬間功率的頻率 $f_p = 120$ Hz。
- 47. 如圖(二十五)所示,弦波電壓源 \overline{V} 之有效值為 200V, $R = 40\Omega$ 、 $X_L = 60\Omega$ 、 X_C = 30Ω ,則下列敘述何者正確?
 - (A)電路的功率因數 PF = 0.8
- (B)電源供給的平均功率 P=1000W
 - (C)電源供給的虛功率 Q = 1000VAR
- (D)電源提供的視在功率 S = 1000 VA。


育達系列 8 創新研發

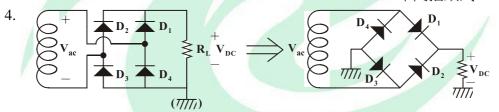
- 48. 如圖(二十六)所示,可調整頻率之弦波交流電壓源 \overline{V} = 110V,當角頻率 ω = 500rad/sec 時,R = 10 Ω 、 X_L = 250 Ω 、 X_C = 40 Ω 。調整電源頻率至諧振時,則下列敘述何者正確?
 - (A) 諧振角頻率ω₀ = 200 rad/sec
- (B)諧振角頻率ω₀ = 300rad/sec

(C) Ī 為 20A

(D) Ī為 10A。

- 圖(二十六)
- 49. 如圖(二十七)所示,若弦波交流電壓源 \overline{V} = 100V, R = 8 Ω , L = 1mH, C = 10 μ F, 則諧振時之 \overline{I} 為何?
 - (A)6A
- (B)8A
- (C)10A
- (D)12A_o
- 50. 有一個三相平衡電源,供給每相阻抗為 11∠ 60°Ω 之平衡三相△ 接負載。若電源 線電壓有效值為 220V,則此電源供給之總平均功率為何?
 - (A)13200W
- (B)6600W
- (C)4400W
- (D)2200W_o

【解答】


1.(B)	2.(A)	3.(A)	4.(B)	5.(B)	6.(A)	7.(B)	8.(D)	9.(C)	10.(A)
11.(D)	12.(B)	13.(B)	14.(C)	15.(C)	16.(B)	17.(C)	18.(A)	19.(D)	20.(C)
21.(A)	22.(D)	23.(B)	24.(D)	25.(A)	26.(B)	27.(C)	28.(A)	29.(D)	30.(C)
31.(D)	32.(C)	33.(D)	34.(A)	35.(B)	36.(D)	37.(C)	38.(D)	39.(A)	40.(B)
41.(A)	42.(C)	43.(D)	44.(C)	45.(C)	46.(D)	47.(A)	48.(A)	49.(B)	50.(B)

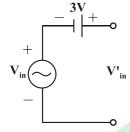
107 學年度四技二專統一入學測驗 電機與電子群專業(一) 試題詳解

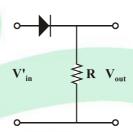
1.
$$I_{S(35^{\circ}C)} = I_{S(5^{\circ}C)} \times 2^{\frac{35^{\circ}C - 5^{\circ}C}{10^{\circ}C}} = 6nA \times 2^{3} = 48nA$$

2.
$$I_Z = \frac{18-3}{120} - \frac{3}{60} = 125\text{m} - 50\text{m} = 75\text{mA}$$

 $P_Z = V_Z \times I_Z = 3V \times 75\text{mA} = 225\text{mA}$

3. 全波整流電路中,理想二極體之峰值逆向耐壓(PIV)—hermonth 中間抽頭式 $=2V_m$


ALeader


5.

(一)箝位:

(二)串聯截波:

 $(1)V'_{in} \ge 0$: DON :: $V_{out} = V'_{in}$; $(2)V'_{in} < 0$: DOFF :: $V_{out} = 0$

6. BJT 操作於順向主動區時, NPN 與 PNP 皆為: B - E 接面順向偏壓, B - C 接面逆向偏壓。

7.
$$R_{C} = \frac{V_{CC} - V_{f} - V_{CES}}{I_{f}} = \frac{5 - 2 - 0}{10m} = 300\Omega$$

$$\overline{m} I_{B(min)} = \frac{I_{CS}}{\beta} = \frac{I_{f}}{\beta} = \frac{10mA}{50} = 0.2mA$$

$$\therefore R_{B(max)} = \frac{V_{BB} - V_{BES}}{I_{B(min)}} = \frac{5 - 0.8}{0.2m} = 21k\Omega$$

BJT 欲飽和:R_B≦ R_{B(max)} ∴取 R_B = 20kΩ

8. (1)BJT 未飽和時, T^{\uparrow} , β ↑ ;(2)具射極電阻之基極分壓式偏壓電路, I_{CQ} 幾乎 與 β 值無關;(3)集極回授式偏壓電路之 R_B 具有並 - 並式負回授特性;(4)射極 回授式偏壓電路之 R_E ,具有串 - 串式負回授特性。

9.
$$I_{RC} = \frac{V_{CC} - V_{CE}}{R_C} = \frac{12 - 6}{1K} = 6mA$$

$$I_B = \frac{I_{RC}}{1 + \beta} = \frac{I_{RC}}{\beta} = \frac{6mA}{150} = 0.04mA$$

$$R_B = \frac{V_{CE} - V_{BE}}{I_B} = \frac{6 - 0.7}{0.04m} = 132.5 \text{ k}\Omega$$

10.
$$: V_i$$
的正弦波平均值 = $0V$ $: V_o$ 的反相正弦波平均值也是 $0V$

 \therefore 此題 V_o 的平均值為其直流基準電壓 V_C :

$$: β \gg 1 : I_C = I_E = \frac{V_{CC} - V_{BE}}{\frac{R_B}{\beta} + R_E} = \frac{20 - 0.7}{\frac{400K}{50} + 1K} = 2.14mA$$

$$V_C = V_{CC} - I_C R_C = 20 - 2.14 \text{m} \times 3 \text{k} = 13.58 \text{V}$$

11.
$$I_E = \frac{|V_{EE}| - V_{BE}}{R_E} = \frac{6 - 0.7}{2K} = 2.65 \text{mA}$$

$$r_e = \frac{V_T}{I_E} = \frac{26mV}{2.65mA} = 9.8\Omega$$

$$\alpha = \frac{\beta}{1+\beta} = \frac{49}{1+49} = 0.5$$

$$\therefore A_{v} = \frac{V_{o}}{V_{i}} = \alpha \times \frac{R_{C}/\!\!/ R_{L}}{r_{e}} = 0.98 \times \frac{2K/\!\!/ 2K}{9.8} = 100$$

12.
$$A_i = \left| \frac{i_o}{i_i} \right| = \frac{(\frac{V_o}{R_L})}{(\frac{V_i}{R_E//r_e})} = A_V \times \frac{R_E//r_e}{R_L} = 100 \times \frac{2k//9.8}{2K} = 100 \times \frac{9.8}{2K} = 0.49$$

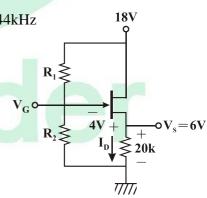
13.
$$Av_T = 100 \times 10 \times 1 = 1000$$

:.
$$NdB_T = 20logAv_T = 20log1000 = 60dB$$

14.
$$f_{H(2)} = f_H \times \sqrt{\sqrt{2} - 1} = 200 \text{kHz} \times 0.64 = 128 \text{kHz}$$

$$f_{L(2)} = \frac{f_L}{\sqrt{\sqrt{2}-1}} = \frac{1kHz}{0.64} = 1.5625kHz$$

:.
$$BW_{(2)} = f_{H(2)} - f_{L(2)} = 128kHz - 1.5625kHz = 126.44kHz$$


15.
$$V_S = I_D \times R_S = 0.5 \text{mA} \times 20 \text{k}\Omega = 10 \text{V}$$

$$V_G = V_S - 4V = 10V - 4V = 6V$$

$$\overline{m} \ V_G = 18 \times \frac{R_2}{R_1 + R_2} = 18 \times \frac{1}{\frac{R_1}{R_2} + 1} = 6$$

$$\therefore \frac{R_1}{R_2} = 2$$

16.
$$V_{GS} = V_{DS} = V_{DD} - I_D R_D = 12 - 2m \times 3k = 6V$$

17. :
$$I_D = I_{DSS}(1 - \frac{V_{GS}}{V_P})^2$$
 ...(1)而 $g_m = -\frac{2I_{DSS}}{V_P} \times (1 - \frac{V_{GS}}{V_P})$...(2) (1)代入(2)得:

$$\therefore g_{m} = -\frac{2I_{DSS}}{V_{P}} \times (1 - \frac{V_{GS}}{V_{P}}) = \frac{-2 \times \frac{I_{D}}{(1 - \frac{V_{GS}}{V_{P}})^{2}}}{V_{P}} \times (1 - \frac{V_{GS}}{V_{P}}) = \frac{-2I_{D}}{V_{P} \times (1 - \frac{V_{GS}}{V_{P}})}$$

$$= \frac{-2I_{D}}{V_{P} - V_{GS}} \implies g_{m}(V_{P} - V_{GS}) = -2I_{D} \implies 3m \times [V_{P} - (-2)] = -2 \times 3m$$

$$\therefore V_P$$
= -4V 代回(1)式: I_{DSS} = $\frac{I_D}{(1-\frac{V_{GS}}{V_P})^2}$ = $\frac{3m}{(1-\frac{-2}{-4})^2}$ =12mA

$$:: V_{GS} = 0$$
 時 , $g_{mo} = -\frac{2I_{DSS}}{V_P} = -\frac{2 \times 12mA}{-4V} = 6mA/V$

18.
$$g_m = 2\sqrt{k \times I_D} = 2\sqrt{2m \times 2m} = 4mA/V$$

 $A_V = \frac{V_o}{V_i} = \frac{-g_m R_D}{1 + g_m R_S} = \frac{-4m \times 5k}{1 + 4m \times 2k} = -2.22$

19. (1)
$$R_S = \frac{|V_{GS}|}{I_D} = \frac{1}{g_m} = 125\Omega$$
 $\overline{m} I_{DSS} = \frac{I_D}{[1 - \frac{V_{GS}}{V_{GS(off)}}]^2} = \frac{8mA}{(1 - \frac{-1}{-3})^2} = 18mA$

$$(2)g_{\rm m} = \frac{2}{\left| V_{\rm GS(off)} \right|} \times \sqrt{I_{\rm D} \times I_{\rm DSS}} = \frac{2}{3} \times \sqrt{8m \times 18m} = 8mA/V$$

(3)
$$R_i = R_s / \frac{1}{g_m} = 125 / \frac{1}{g_m} = 125 / \frac{1}{8_m} = 62.5 \Omega$$

 $A_v = \frac{V_o}{V_c} = g_m R_D = 8_m \times 2k = 16$

20. µ A741 之輸入級為差動放大器,輸出級為射極隨耦器。

21.
$$V_0 = 3 \times \frac{1k}{5k+1k} \times \frac{2k+4k}{2k} = 1.5V$$

23.
$$\therefore f_0 = \frac{1}{2\pi\sqrt{6}RC} = \frac{0.065}{RC}$$

 $\therefore RC = \frac{0.065}{1300} = 5 \times 10^{-5}$ $\mathbb{R} R = 1k\Omega$, $C = 0.05\mu$ F

- 24. $T_0 = \ell_{n} 2 \times (R_{B1}C_1 + R_{B2}C_2) = 0.7(R_{B1}C_1 + R_{B2}C_2)$
- 25. $\Rightarrow V_R = 0$: $V_{YY} = R_2 \times [+V_{YY} (-V_{YY})] = R_2$

$$V_{H} = \frac{R_{2}}{R_{1}} \times [+V_{sat} - (-V_{sat})] = \frac{R_{2}}{R_{1}} \times 2V_{sat}$$

而 $V_R \neq 0$ 時之 V_H 值與 $V_R = 0$ 時相同。

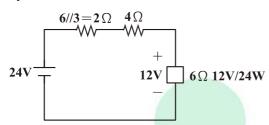
26.
$$Q = It mAh$$

$$3200 = 10 \times t + 200 \times 10$$
, $t = 120$ hr

27.
$$P_{\text{ }\#\text{ }} = \frac{10}{0.8} (1-0.8) = 2.5 \text{kw}$$

$$W_{\rm H}$$
 = $P_{\rm H}$ × t

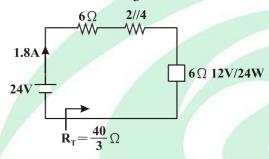
$$1200 = 2.5 \times t \times 4 \times 20$$
, $t = 6 \text{hr}$


28. 剪成兩截後 R' =
$$\frac{2}{2}$$
 = 1Ω

$$P_T = I^2 R_T = 2^2 \times 0.5 = 2W$$

29.
$$R = \frac{V^2}{P} = \frac{12^2}{24} = 6\Omega$$

S1, S2, S4 閉合後


$$R_T = 6//3 + 4 = 6\Omega$$

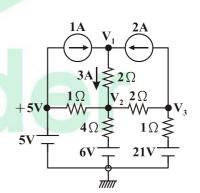
30.
$$R_T = \frac{24}{1.8} = \frac{40}{3} \Omega = 6 + 6 + 2//4 = 6 + 6 + \frac{4}{3}$$

S₁, S₃, S₄ 閉合

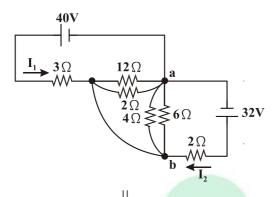
$$R_T = 6 + 6 + 2//4 = \frac{40}{3} \Omega$$

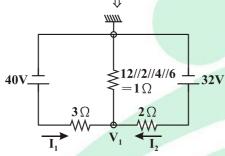
31. 電橋平衡 4×12 = 4×12

$$R_T = 2 + 8//(4 + 12)//(4 + 12) = 6\Omega$$

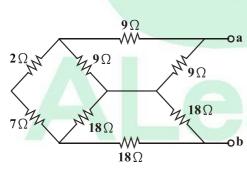

$$E = 3 \times 6 = 18V$$

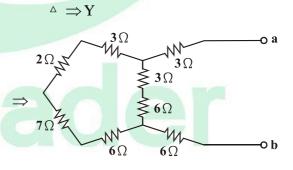
32. 節點 V 法


節點電壓法
$$\begin{cases} \frac{V_2-5}{1} - 3 + \frac{V_2-V_3}{2} + \frac{V_2-6}{4} = 0 \\ \frac{V_3-V_2}{2} + 2 + \frac{V_3-21}{1} = 0 \end{cases}$$


$$\Rightarrow \begin{cases} 7V_2-2V_3=38...(1) \\ -V_2-3V_3=38...(2) \end{cases}, (1)\times 3 + (2)\times 2 \ \text{\notear} \ V_2 = 10$$

$$V_1 = 2 \times 3 + V_2 = 6 + 10 = 16V$$


節點V法


$$\frac{V_1 - 40}{3} + \frac{V_1}{1} + \frac{V_1 - 32}{2} = 0 \quad V_1 = 16V$$

$$I_1 = \frac{40 - 16}{3} = 8A$$

$$I_2 = \frac{32-16}{2} = 8A$$

34.
$$R_{ab} = 3 + (3 + 6)//(3 + 2 + 7 + 6) + 6 = 15\Omega$$

35.
$$c' = \epsilon \frac{aA}{\frac{1}{2}d} = 8C$$
, $a = 4$

36.
$$S = \frac{V_{max}}{d}$$
, $V_{max} = Sd = 30 \times 0.3 = 9kV$

育達系列 7 創新研發

37.
$$L = \frac{N\phi}{I} = \frac{100 \times 2 \times 10^6 \times 10^{-8}}{10} = 0.2H$$

38.
$$F = \frac{\mu \ell I_1 I_2}{2\pi d}$$

$$0.016 = \frac{4\pi \times 10^{-7} \times 8 \times 2I_2 \times I_2}{2\pi \times 0.02} , I_2 = 10A$$

$$I_1 = 2I_2 = 20A$$

39.
$$t = RC = T$$
, $V_C = E(1 - e^{-1}) = E \times 0.632$

$$\begin{array}{c|c}
 & 90 \text{mH} \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$R_{Th} = 2//6 = 1.5\Omega$$

$$V_{Th} = 40 \times \frac{6}{2+6} = 30V$$

L 充
$$\tau = \frac{90\text{m}}{1.5+3} = 2 \ 0$$

$$V(t) = \frac{30}{1.5 + 3} \times (1 - e^{-t/20 \times 10^{-3}}) \times 3 = 20(1 - e^{-50t})$$

41.
$$V_{\text{rms}} = \sqrt{\frac{6^2 \times 1 + 12^2 \times 1 + (-4)^2 \times 1}{3}} = \sqrt{65.33} \text{ V}$$

42.
$$\sqrt[4]{64\angle 180^{\circ}} + (\sqrt{2}\angle 45)^{3} = \sqrt[4]{64}\angle \frac{180^{\circ}}{4} + (\sqrt{2})^{3}\angle 45 \times 3$$

= $2\sqrt{2}\angle 45^{\circ} + 2\sqrt{2}\angle 135^{\circ} = 2 + j2 - 2 + j2 = j4 = 4\angle 90^{\circ}$

43.
$$X_C = \frac{1}{WC} = \frac{1}{2500 \times 10 \times 10^{-6}} = 40\Omega$$

$$\bar{Z} = 40 - j40 = 40\sqrt{2} \angle -45^{\circ}$$

$$\bar{V}_R = 100 \angle -30 + 90^\circ \times \frac{40}{40\sqrt{2} \angle -45} = 50\sqrt{2} \angle 105^\circ$$

$$\vec{V}_{C} = 100 \angle -30 + 90^{\circ} \times \frac{40 \angle -90^{\circ}}{40\sqrt{2} \angle -45^{\circ}} = 50\sqrt{2} \angle +15^{\circ}$$

$$V_R(t) = 100\sin(2500t + 105^\circ) = 100\cos(2500t + 15^\circ)$$

$$V_C(t) = 100\sin(2500t + 15^\circ) = 100\cos(2500t - 75^\circ)$$

44.
$$\bar{I}_R = \frac{100 \angle 30^\circ}{20} = 5 \angle 30^\circ$$
 $\bar{I}_L = \frac{100 \angle 30^\circ}{10 \angle 90^\circ} = 10 \angle -60^\circ$
 $\bar{I}_C = \frac{100 \angle 30^\circ}{20 \angle -90^\circ} = 5 \angle 120^\circ$
 $\bar{I} = 5 \angle 30^\circ + 10 \angle -60^\circ + 5 \angle 121^\circ$
 $= 1 \angle 30^\circ (5 + 10 \angle -90^\circ + 5 \angle 90^\circ)$
 $= 1 \angle 30^\circ (5 - j10 + j5)$
 $= 1 \angle 30^\circ (5 - j5) = 1 \angle 30^\circ \times 5\sqrt{2} \angle -45^\circ$
 $= 5\sqrt{2} \angle -15^\circ$

45. $\bar{Z}_T = \frac{\bar{V}}{\bar{I}} = \frac{100\sqrt{2} \angle 45^\circ}{200\sqrt{2} \angle 45^\circ} = 0.5 \angle 0^\circ$ R 性

負載 $1 \quad \bar{Z}_1 = \frac{100\sqrt{2} \angle 45^\circ}{100 \angle 90^\circ} = \sqrt{2} \angle 45^\circ$ L 性

 \hat{D} 並 $200\sqrt{2} \angle 45^\circ = 100 + j100 + \bar{I}_3$
 $= 100\sqrt{2} \angle 45^\circ + \bar{I}_3$
 $\bar{I}_3 = 100\sqrt{2} \angle 45^\circ$
負載 $3 \quad \bar{Z}_3 = \frac{100\sqrt{2} \angle 45^\circ}{100 \angle 2 \angle 45^\circ} = 10$ 純 R 性

$$P = VI\cos\theta = \frac{110\sqrt{2}}{\sqrt{2}} \times \frac{10}{\sqrt{2}} \times \cos 60^{\circ} = 275\sqrt{2} W$$

$$S = VI = \frac{110\sqrt{2}}{\sqrt{2}} \times \frac{10}{\sqrt{2}} = 550\sqrt{2} \text{ VA}$$

$$P_{\text{max}} = P + S = 825 \sqrt{2} W$$

$$P_{min} = P - S = -275 \sqrt{2} W$$

$$f_v = \frac{120\pi}{2\pi} = 60 \text{Hz}$$

$$f_p = 2f_v = 120Hz$$

47.
$$\vec{Z} = 40 + j60 - j30 = 40 + j30 = 50 \angle 36.9^{\circ}$$

$$P.F = \frac{R}{Z} = \frac{40}{50} = 0.8$$

$$I = \frac{200}{50} = 4A$$

$$P = 4^2 \times 40 = 640W$$

$$Q = 4^2 \times 30 = 480 \text{VAR}$$

$$S = 4^2 \times 50 = 800 \text{VA}$$

48.
$$W_o = W \sqrt{\frac{X_C}{X_L}} = 500 \sqrt{\frac{40}{250}} = 200 \text{rad/s}$$

$$\vec{I} = \frac{110}{10} = 11 \text{A}$$

49.
$$W_o = \frac{1}{\sqrt{LC}} \sqrt{1 - \frac{R^2C}{L}} = \frac{1}{\sqrt{1 \times 10^{-3} \times 10 \times 10^{-6}}} \sqrt{1 - \frac{8^2 \times 10 \times 10^{-6}}{1 \times 10^{-3}}} = 6000 \text{ rad/s}$$

$$X_{LO} = W_O$$
 . $L = 6\Omega$

RL \(\Big| \)
$$\Rightarrow$$
 RL \(\Delta \), \(Y = \frac{1}{8 + j6} \times \frac{8 - j6}{8 - j6} = \frac{8 - j6}{8^2 + 6^2} = \frac{8}{100} - j \frac{6}{100}

$$R' = \frac{100}{8} \Omega$$
, $I_0 = \frac{100}{\frac{100}{8}} = 8A$

50.
$$\triangle V_p = V_\ell = 220V$$

$$I_p = \frac{220}{11} = 20 \text{ A}$$

$$P = 3V_pI_p\cos\theta = 3\times220\times20\times\cos60^{\circ} = 6600W$$

ALeader