108 學年度四技二專統一入學測驗

數學(B) 試題

數學 B 參考公式

1.	首項為 a .	公比為 r(r≠	1)的等比數列	∥前 n 項之和為	為 S =	$\frac{a(1-r^n)}{}$	- 0
	,		1)40 3 20327	, , , , , , , , , , , , , , , , , , ,	. .	1- r	٠

- 2. 若α、β 為一元二次方程式 $ax^2 + bx + c = 0$ 的兩根, 則α +β = $\frac{-b}{a}$ 、α β = $\frac{c}{a}$.
- 3. 相異物的直線排列數 $P_r^n = \frac{n!}{(n-r)!}$ 、不可重複的組合數 $C_r^n = \frac{n!}{r!(n-r)!}$ 、重複 組合數 $H_r^n = C_r^{r+n-1}$ 。
- 4. $\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$, $\cos(\alpha + \beta) = \cos\alpha \cos\beta \sin\alpha \sin\beta$.
- 1. 甲同學想要網購某支特定手機,上網逛了7家購物網站後,告訴好友說:「該款 手機的價差不大,在100元以內」。試問甲所說的話中,應用了下列哪一種統計 量?
- (A)四分位距 (B)全距 (C)標準差 (D)百分位數。 2. 假設分針原始指在時鐘 12 的位置, 現將分針依順時針的方向轉了 2019°。試問下 列敘述何者正確?
 - (A)分針指在 9 跟 10 之間

(B)分針指在7跟8之間

(C)分針指在5跟6之間

(D)分針指在3跟4之間。

3. 下列何值與 log₂5 相等?

$$(A)\log 5 - \log 2 \qquad (B)$$

$$(C) \frac{\log 50}{\log 20}$$

 $(A) \log 5 - \log 2 \qquad (B) \log (\frac{5}{2}) \qquad (C) \frac{\log 50}{\log 20} \qquad (D) \frac{\log 25}{\log 4} \, .$ 4. 若方程式 $3x^2$ - 39x + k = 0 的兩根為連續整數,則 k = ?

(A)168

(B)126

(C)84

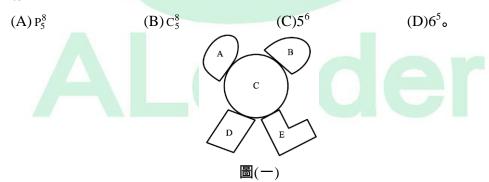
5. 已知直線 L 之斜率為 2.x 截距為 3。試問 L 與兩坐標軸所包圍三角形之面積為

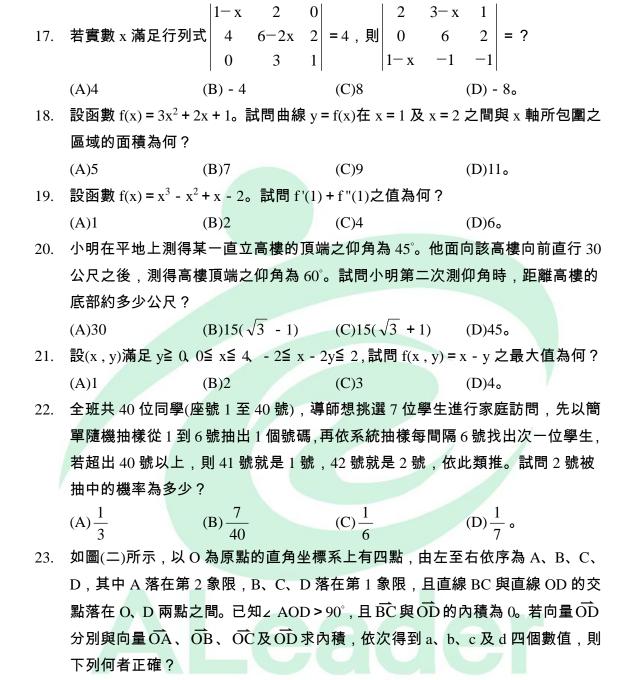
 $(A)\frac{9}{4}$

 $(B)\frac{9}{2}$

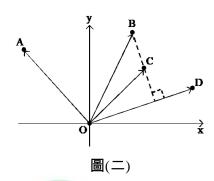
(C)6

 $(D)9_{\circ}$


_	=0. 0	7-)	0/0 0 = EDDD 0/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
6.	` ′	•	$) = 4 \pm f(-2) = f(1) =$	= f(3) = 0。試問 f(x)除以 :	X						
	- 2 之餘式為何										
			(C)3								
7.	設 x 、 y 為實數,且 $x - 2y = 10$ 。試問 $f(x, y) = x^2 + y^2$ 之最小值為何?										
	(A)25	(B)20	(C)17	$(D)16_{o}$							
8.	設 $(3^{\rm m})^3 = 729$ 且 $4^{\rm n-m} = \frac{1}{256}$,則 $m+n=?$										
	(A) - 1	(B)0	(C)1	(D)2°							
9.	若 a = sinθ ,則下列敘述何者恆為正確?										
	$(A)\sin(\theta + 90^\circ) = a$ $(B)\cos(\theta + 90^\circ) = a$										
	$(C)\sin(\theta + 180)$	°) = - a	$(D)\cos(\theta + 1)$	$80^{\circ}) = -a_{\circ}$							
10.	當角度θ 由 15	°上升至 75°時,關	於 tanθ 之值的變化	下列敘述何者正確?							
	(A)一直上升	(B)一直下降	(C)先上升後 ⁻	下降 (D)先下降後上升。	,						
11.	一顆雞蛋從生產	全到運送至超市販	售,所需的成本為4	元,在超市的售價為 5 元	÷,						
	其獲利由蛋農與超市平分;但運送過程中破裂或超過保存期限等因素,超市會將										
	雞蛋銷毀,雞蛋即無法成功銷售,超市亦不付蛋農任何款項。若一顆雞蛋無法成										
	功銷售的機率為 0.006,則蛋農一顆雞蛋之獲利的期望值為多少元?										
	(A)0.473	(B)0.5	(C)0.967	(D)0.97°							
12.	在理想環境下	,將一球自離地面:	30 公尺處垂直落下,	球只會上下垂直來回彈跳	Ł.						
	若每次反彈高原	度為前一次高度的	$\frac{2}{5}$,則此球靜止前所	f經過的路程為多少公尺	?						
	(A)50	(B)60	(C)70	(D)80°							


ALeader

- 13. 某校校長想知道全校學生贊成取消早自習的比例 p, 並將 p 在 95%的信心水準下之信賴區間簡稱 95%信賴區間,現從所有學生中隨機抽取樣本數為 36 的一組樣本, 利用這 36 位學生的意見求得 p 之 95%信賴區間為[0.642, 0.914]。若學生對早自習是否取消的意見是固定不變的,則下列何者為正確解讀?
 - (A)該校約有 95%的學生贊成取消早自習
 - (B)p 落在 64.2%與 91.4% 之間的機率為 95%
 - (C)若進行 1000 次抽樣調查,每次皆隨機抽取樣本數為 36 的一組樣本,共可算得 1000 個 p 之 95%信賴區間,其中約有 950 個區間會包含 p
 - (D)若進行 1000 次抽樣調查,每次皆隨機抽取樣本數為 36 的一組樣本,共可算得 1000 個學生贊成取消早自習的樣本比例,其中約有 950 個會落在 64.2%與 91.4%之間。
- 14. 若拋物線 $y = ax^2 + b$ 之開口向上且與 x 軸沒有交點,則下列敘述何者正確? (A)a > 0, b > 0 (B)a > 0, b < 0 (C)a < 0, b > 0 (D)a < 0, b < 0。
- 15. 已知直線 L_1 為 $y = m_1 x$ 、直線 L_2 為 $y = m_2 x$ 。若 m_1 、 m_2 的值皆為 2、 $\frac{1}{2}$ 或 $-\frac{1}{2}$ 三 種數字之一,彼此取值互為獨立,且三種數字出現的機率相同,則 L_1 和 L_2 相互垂直的機率為何?

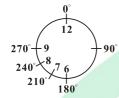

(A) $\frac{4}{9}$ (B) $\frac{1}{3}$ (C) $\frac{2}{9}$ (D) $\frac{1}{9}$ \circ

16. 如圖(一)所示,使用 8 種不同顏色塗在圖中標號 A、B、C、D、E 的 5 個格子內, 顏色不可重複使用,若規定同一格子僅塗同一顏色,則共可塗出幾種不同的著色 樣式?

(A)b > a > c > d (B)b = c > d > a (C)a > b > c > d $(D)d > b = c > a_0$

- 24. 已知向量 \vec{a} 、 \vec{b} 、 \vec{c} 及 \vec{d} 分別自(1,0)、(0,1)或(1,1)三向量中選取出來,例如, \vec{a} = (1,0)、 \vec{b} = (0,1)、 \vec{c} = (0,1)、 \vec{d} = (1,1),或 \vec{a} = (1,1)、 \vec{b} = (0,1)、 \vec{c} = (1,0)、 \vec{d} = (1,0)等等皆屬可能的選取情形。若計算 \vec{a} + \vec{b} + \vec{c} + \vec{d} 所有可能的情形後,則可得到幾種不同的結果?
 - (A)10
- (B)15
- (C)20
- $(D)3^{4}$ _o
- 25. 已知一圓方程式 $x^2 + y^2 2x 6y + 9 = 0$ 。若直線 y = b 與該圓有交點,則下列敘述何者正確?
 - (A)b≧ 5
- (B)b≦ 4
- (C) 1≦ b≦ 1
- (D)2≦ b≦ 4_o

ALeader


【解答】

- 1.(B) 2.(B) 3.(D) 4.(B) 5.(D) 6.(B) 7.(B) 8.(B) 9.(C) 10.(A)
- 11.(A) 12.(C) 13.(C) 14.(A) 15.(C) 16.(A) 17.(A) 18.(D) 19.(D) 20.(C)
- 21.(C) 22.(A) 23.(D) 24.(B) 25.(D)

108 學年度四技二專統一入學測驗

數學(B) 試題詳解

- 21.(C) 22.(A) 23.(D) 24.(B) 25.(D)
- 1. 價差在 100 元內,表最高與最低不會相差超過 100 元,所以指的是全距。
- 2. $2019^{\circ} 360^{\circ} \times 5^{\circ} = 219^{\circ} \rightarrow$ 如圖在 $7 \sim 8$ 之間

3.
$$\log_2 5 = \frac{\log 5}{\log 2} = \frac{2\log 5}{2\log 2} = \frac{\log 5^2}{\log 2^2} = \frac{\log 25}{\log 4}$$

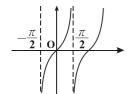
4. 設二根為
$$\alpha$$
 , α + 1 \rightarrow α + (α + 1) = $-\frac{-39}{3}$ \rightarrow 2 α + 1 = 13 \rightarrow α = 6 \rightarrow 二根為 6、7 \rightarrow 6×7 = $\frac{k}{3}$ \rightarrow k = 42×3 = 126

7. 依柯西不等式
$$(x^2 + y^2)[1^2 + (-2)^2] \ge (x - 2y)^2 \rightarrow (x^2 + y^2) \times 5 \ge 10^2$$

 $\rightarrow x^2 + y^2 \ge 20$ 最小值 = 20

8.
$$(3^{m})^{3} = 729 = 3^{6} \rightarrow 3m = 6 \rightarrow m = 2$$

 $4^{n-m} = (2^{2})^{n-m} = 2^{2n-2m} = \frac{1}{2^{8}} = 2^{-8} \rightarrow 2n - 2m = -8 \rightarrow 2n - 2 \times 2 = -8 \quad n = -2$
 $m + n = 0$


9.
$$(A)\sin(\theta + 90^\circ) = \sin(90^\circ + \theta) = +\cos\theta \neq a$$

$$(B)\cos(\theta + 90^\circ) = \cos(90^\circ + \theta) = -\sin\theta = -a \neq a$$

$$(C)\sin(\theta + 180^{\circ}) = \sin(180^{\circ} + \theta) = -\sin\theta = -a$$

$$(D)\cos(\theta + 180^{\circ}) = \cos(180^{\circ} + \theta) = -\cos\theta \neq -a$$

10. 如圖 y = tanx → 0 ~ 90°間皆為上升

11.
$$\Sigma$$
 機率×報酬 = $0.006 \times (-4) + 0.994 \times (\frac{5-4}{2}) = -0.024 + 0.497 = 0.473$

12. 增加一趙 30,再扣 30
$$\frac{30 \times 2}{1 - \frac{2}{5}}$$
 - 30 = $\frac{60}{\frac{3}{5}}$ - 30 = $60 \times \frac{5}{3}$ - 30 = 70

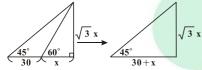
13. 95%信賴區間指的是每次隨機抽取樣本數為 n 的一組樣本,可算得 1000 個 p 中, 約有 950 個區間會包含 p。

14.
$$y = ax^2 + b$$
 方程式對稱軸為 $x = 0(y 軸)$,頂點 $(0, b)$,如圖 $\to a > 0$; $b > 0$

16. 顏色不重複,但要排列於 A,B,C,D,E→ P₅⁸

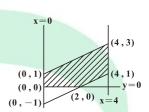
17.
$$2\begin{vmatrix} 1-x & 2 & 0 \\ 2 & 3-x & 1 \\ 0 & 3 & 1 \end{vmatrix} = 4 \rightarrow \begin{vmatrix} 1-x & 2 & 0 \\ 2 & 3-x & 1 \\ 0 & 3 & 1 \end{vmatrix} = 2 \rightarrow (1-x)\begin{vmatrix} 3-x & 1 \\ 3 & 1 \end{vmatrix} - 2\begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$

$$= 2 \rightarrow (1-x)\begin{vmatrix} 3-x & 1 \\ 3 & 1 \end{vmatrix} = 6$$


求值式 =
$$2 \begin{vmatrix} 2 & 3-x & 1 \\ 0 & 3 & 1 \\ 1-x & -1 & -1 \end{vmatrix} = 2 \begin{vmatrix} 1-x & -1 & -1 \\ 2 & 3-x & 1 \\ 0 & 3 & 1 \end{vmatrix}$$

= $2[(1-x)\begin{vmatrix} 3-x & 1 \\ 3 & 1 \end{vmatrix} - (-1)\begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} + (-1)\begin{vmatrix} 2 & 3-x \\ 0 & 3 \end{vmatrix}] = 2[6+2-6] = 4$

育達系列 2 創新研發


18.
$$f(x) = 3(x^2 + \frac{2}{3}x) + 1 = 3(x + \frac{1}{3})^2 + \frac{2}{3}$$

$$\int_{1}^{2} (3x^2 + 2x + 1) dx = (x^3 + x^2 + x) \Big|_{1}^{2} = (8 + 4 + 2) - (1 + 1 + 1) = 11$$

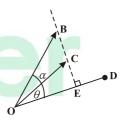
19.
$$f(x) = x^3 - x^2 + x - 2$$
 $f'(x) = 3x^2 - 2x + 1$ $f''(x) = 6x - 2$
 $f'(1) + f''(1) = (3 - 2 + 1) + (6 - 2) = 2 + 4 = 6$

20.
$$\sqrt{3} = 30 + x = x(\sqrt{3} - 1) = 30 = x = \frac{30}{\sqrt{3} - 1} = 15(\sqrt{3} + 1)$$

21.
$$x - 2y = 2$$
 $\begin{array}{c|cccc} x & 0 & 4 & 2 \\ \hline y & -1 & 1 & 0 \\ \hline x - 2y = -2 & \begin{array}{c|cccc} x & 0 & 4 \\ \hline y & 1 & 3 \\ \hline \end{array}$

畫完圖後,得5個頂點代入目標函數

$$f(0, 0) = 0$$
, $f(2, 0) = 2$, $f(4, 1) = 3$, $f(4, 3) = 1$, $f(0, 1) = -1$


→ 最大值為3

$$1 \sim 6$$
 抽中 , 2 , 6 號機率各為 $\frac{1}{6} \rightarrow \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$

$$\mathbf{b} = \overrightarrow{\mathbf{OD}} \cdot \overrightarrow{\mathbf{OB}} = |\overrightarrow{\mathbf{OD}}| \cdot |\overrightarrow{\mathbf{OB}}| \cos \alpha = |\overrightarrow{\mathbf{OD}}| |\overrightarrow{\mathbf{OE}}|$$

$$\mathbf{c} = \overrightarrow{OD} \cdot \overrightarrow{OC} = |\overrightarrow{OD}| \cdot |\overrightarrow{OC}| \cos \theta = |\overrightarrow{OD}| |\overrightarrow{OE}|$$

$$d = \overrightarrow{OD} \cdot \overrightarrow{OD} = |\overrightarrow{OD}| \cdot |\overrightarrow{OD}|\cos 0^{\circ} = |\overrightarrow{OD}||\overrightarrow{OD}| \rightarrow$$
最大

- 24. $\vec{a} + \vec{b} + \vec{c} + \vec{d} : 4(1,0) = (4,0) \quad 4(0,1) = (0,4) \quad 4(1,1) = (4,4)$ $3(1,0) + (0,1) = (3,1) \quad 3(1,0) + (1,1) = (4,1) \quad 2(1,0) + 2(0,1) = (2,2)$ $3(0,1) + (1,0) = (1,3) \quad 3(0,1) + (1,1) = (1,4) \quad 2(1,0) + 2(1,1) = (4,2)$ $3(1,1) + (1,0) = (4,3) \quad 3(1,1) + (0,1) = (3,4) \quad 2(0,1) + 2(1,1) = (2,4)$ $2(1,0) + (0,1) + (1,1) = (3,2) \quad 2(0,1) + (1,0) + (1,1) = (2,3)$ $2(1,1) + (1,0) + (0,1) = (3,3) \quad \rightarrow \ \pm 15 \ \boxed{4}$
- 25. y = b 代入圓 $x^2 + b^2 2x 6b + 9 = 0 \rightarrow x^2 2x + (b^2 6b + 9) = 0$ 有交點 \rightarrow 判別式 ≥ 0 $(-2)^2 - 4(b^2 - 6b + 9) \geq 0 \xrightarrow{\div (-4)} b^2 - 6b + 9 - 1 \leq 0 \rightarrow b^2 - 6b + 8 \leq 0$ $(b-2)(b-4) \leq 0 \rightarrow 2 \leq b \leq 4$

ALeader